DAS LACTON DER 5-HYDROXY-CIS-2,CIS-7-DECADIENSAEURE UND WEITERE LACTONE

AUS DEM ABSOLUE DER BLUETEN VON POLIANTHES TUBEROSA L

Roman Kaiser und Dietmar Lamparsky

Givaudan Forschungsgesellschaft AG,CH-Dubendorf-Zurich

(Received in Germany 20 February 1976; received in UK for publication 8 April 1976)

Das Absolus der Bluten von Polianthes tuberosa L (Amaryllidacee) wird wegen seines blumigen exotischen Geruchs auf dem Gebiet der Parfumerie sehr geschatzt. In der neueren Literatur liegen praktisch keine Angaben über seine Zusammensetzung vor,wahrend die Standardwerke^{1,2)} folgende Inhaltsstoffe beschreiben Geraniol, Nerol, Benzylalkohol und ihre Acetate, Farnesol, Eugenol, Methyl-und Benzylbenzoat, Methylsalicylat und Methylanthranilat Wir fanden bei der Destillation eines franzosischen Absolues(Ernte 1973, Camilli, Grasse), dass sich ein charakteristischer Teil des Tuberosengeruches in rund 10% des destillierbaren Anteiles (Kp $_{0.03}$ 128 0 ois 150° C) konzentriert. Die saulenchromatographische Auftrennung dieser Partie (Kießelgel, Hexan/Aether 3 1) lieferte neben dem (+)-6-Decalacton $\underline{2}$ (t_*=0,83), Massolalacton $\underline{3}^{3}$ (t_=0,93) und dem (+)- δ -Lacton der 5-Hydroxy-cis-7-decensaure $\underline{4}$ (t_x =1,00) eine Spurenkomponente mit Molekulargewicht 166 (t_=1,09) bis zu 10% argereichert Praparativ-gaschromatographisch liessen sich von dieser Komponente 20 mg isolieren (Reinheit /5-80%,als Verunreinigung 4). Das IR-und NMR-Spektrum bestatigten den MS-Befund eines α,β-ungesattigten δ-Lactons mit einer dis-2-Pentenylseitenkette so dass für den neuen Korper die Struktur 1 wahrscheinlich schien. Den Strukturbeweis erbrachte die Dehydrierung des racemischen Jasminlactones 4⁴) mit DDQ (Dioxan, p-Tolucisulfonsaure)⁵⁾,welche nach Chromatographie des Rohproduktes an der 100fachen Menge Kieseigel über 95%iges 1 ergab Spektrale Daten von $\underline{1}$ IR 1725,1245,1150,1069,1049 1030,810 cm $^{-1}$, NMR δ 1,00(3H,t,J=7cps. 4,46(1H,m),5,1-5,8(2H,m),5,9-6,1(1H,m), MS <u>166(1)</u> 121(7),98(7),97(100),81(16) 69(27),68(10), 41(35),39(16), UV λ_{max}^{2} 213,8 nm (C₂H₅3H, ϵ =8600)

^{*} T = relative Retention auf einer gepackten 3m-Saule, Ø 3mm(2%Carbuwax 20M auf Chromosorb G/AW DMCS 60-80 mesh)bei 220° C, Tragergas Helium 50ml/min

1660 No. 20

Wir schlagen für den neuen Naturstoff in Analogie zum Jasminlacton den Namen Tuberolacton vor

Im Gegensatz zum Jasminlacton ex Jasminum grandiflorum L 6 besitzt $\underline{4}$ ex Polianthes tuberosa L eine positive optische Drehung Da $\underline{1}$ $[\underline{5},6$ -Dihydro-6-(cis-2'-pentenyl)-2H-pyran-2-on] und $\underline{4}$ bei ihrer Hydrierung(Aethanol,Platin-IV-oxid) das ebenfalls im Absolue enthaltene (+)- $\underline{2}$ ergeben, durfte ein biogenetischer Zusammenhang zwischen $\underline{1}$ - $\underline{4}$ bestehen Der Orehwert des von uns isolierten $\underline{2}$ stimmt gut (Tabelle) mit jenem des (+)-5-Decanolids^{7,8}) uberein, das durch mikrobio-

logische Reduktion der entsprechenden Ketosaure erhalten wurde Aus der Interpretation der Arbeit von 0.Korver $^{8)}$ geht hervor, dass diesem Lacton die R-Konfiguration zugeordnet werden kann Die gleiche Konfiguration leitet sich dann auf Grund der chemischen Verknupfung mit (+)-R- δ -Decalacton $\underline{2}$ auch für die aus Tuberosen-Absolue isolierten Lactone $\underline{1}$ und $\underline{4}$ ab Dem aus Jasminblutenol gewonnenen (-)-Jasminlacton dagegen muss demzufolge die S-Konfiguration zugeschrieben werden

<u>1</u>	~77,30	(c=0,670,CHC1 ₃)
(+)- <u>4</u>	+18,5 ⁰	(c=0,368,CHCl ₃)
(-)- <u>4</u> ⁶⁾	-30,5º	(ohne Losungsmittel)
(+)- <u>2</u>	+48,6 ⁰	(c=1,236,CHCl ₃)
	+54,30	(c=1,068,C ₂ H ₅ OH)
(+)- <u>2</u> 7,8)	+53,5 ⁰	(c=1,4, C ₂ H ₅ OH)
<u>2</u> ex <u>1</u>	+48.3 ⁰	(c=G,724, CHCl ₃)
<u>2</u> ex <u>4</u>	+47,3 ⁰	(c=1,226,CHCl ₃ j
()- <u>2</u> 6)	-49,7 ⁰	(ohne Losungsmittel)
<u>3</u> ex(+)-2	-99,40	(c=1,035,CHC1 ₃)

Als Spurenkomponenten konnten in dem untersochten Tuberosen-Absolue ferner δ-Undecalacton, δ-Dodecalacton,δ-Tetradecalacton,γ-Octalacton,γ-Nonalacton, γ-Undecalacton,γ-Dodecalacton und Cumaiin nachgewiesen werden

Bibliographie

- 1) E Gildemeister W Treibs
- 2) E Guenther
- 3) S Abe, K Sato
- 4) E Demole, M Winter
- 5) B Berkoz et al
- 6) M Winter et al
- 7) G Tuynenburg Muys et al
- 8) G Korver

Die atherischen Oele,4 Aufl ,Bd $\underline{4}$,454 ff The Essential Oils, vol $\underline{5}$, 343 ff J chem Soc Japan 75, 953 (1954)

Helv chim Acta 45, 1256 (1962)

Proc chem Soc <u>1964</u>, 215

Helv chim Acta 45, _250(1962)

Appl Microbiol 11, 389 (1963)

Tetrahedron 26, 2391 (19/0)